H=-2t^2+4

Simple and best practice solution for H=-2t^2+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-2t^2+4 equation:



=-2H^2+4
We move all terms to the left:
-(-2H^2+4)=0
We get rid of parentheses
2H^2-4=0
a = 2; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·2·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*2}=\frac{0-4\sqrt{2}}{4} =-\frac{4\sqrt{2}}{4} =-\sqrt{2} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*2}=\frac{0+4\sqrt{2}}{4} =\frac{4\sqrt{2}}{4} =\sqrt{2} $

See similar equations:

| -16=n/2-20 | | (3x-4)°=125° | | 564-7.48x+0.029x^2=115 | | 2c+3=5c= | | 3x-4+125=90 | | –2y+10y=8y | | 2c+3=7c= | | 7-21x=-11 | | -1+4(8x+7)=5x+27 | | 3x-4=125° | | 1÷7x-5=80 | | 4a-7=6a+14 | | -12k=-24k | | -2.8+1.2x=-7+3+9x | | (5a+2)/(6a+-1)=0 | | 35^(1-2x)=7 | | −x+4=6 | | -11=1-3c | | 8x-12=18x=18 | | 2g+3=7g= | | 144-2x=12x | | 2e4=10 | | 9+x÷7=11-x | | 3(6+4x)=6(3+6x) | | a=-5+1/2 | | -4(w+3-3w=2(w+3) | | 4n+2=6(1/3n-2/3​) | | –v+5=5−v | | w-9=89 | | -4(w+3-3w=2( | | 2/3c–2=2+c | | -2x-23=13x+3 |

Equations solver categories